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Let C be a closed bounded convex subset of a Banach space E which has
the origin of E as an interior point and let p. denote the Minkowski functional
with respect to C. Given a closed set X = E and a point u € E we consider a mini-
mization problem min(u, X) which consists in proving the existence of a point
XeX such that po(%—u)=2Ac(u, X), where Ac(u, X)=inf {pc(x—u)|xeX}. If
such a point is unique and every sequence {x,} =X satisfying the condition
lim, , , o pe(x,—u)=7Ac(u, X) converges to this point, the minimization problem
min(u, X) is called well posed. Under the assumption that the modulus of convexity
with respect to pc is strictly positive, we prove that for every closed subset X of E,
the set E,(X) of all u€ E for which the minimization problem min(u, X) is well
posed is a residual subset of E. In fact we show more, namely that the set E\E,(X)
is g-porous in E. Moreover, we prove that for most closed bounded subsets X of
E, the set E\E,(X) is dense in E.  © 1998 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper E is a Banach space of dimension at least 2. For
XcE (X# ) by int X, 0X, and diam X we mean the interior of X, the
boundary of X, and the diameter of X, respectively. If x, ye€ E, xy stands
for the closed interval with end points x and y. A closed ball in E with
center x and radius r >0 is denoted by S(x, r). For notational convenience
we put S=.S5(0, 1).

Define

B ={XcE|Xis nonempty closed bounded}.
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We suppose B is endowed with the Hausdorff metric. As is well known
under this metric B is a complete metric space.

Throughout this paper C will denote a closed bounded convex subset of
E with 0 eint C. Clearly C is an absorbing not necessarily symmetric subset
of E. Recall that the functional of Minkowski p.: E — R with respect to the
set C is defined by

pe(x)=inf {a>0|xeaC}. (1.1)
For Xe®B and ue E put
Aelu, X)=1inf { po(x —u) | x € X}. (1.2)

It is easy to see that A.(u, X) is continuous as a function of u e E.
Given X e B and u e E let us consider the minimization problem, denoted
by

min (1, X) (1.3)

which consists in finding points X € X (if they exist) satisfying p (X —u) =
Ac(u, X). Any such point X is called a solution of (1.3) and any sequence
{x,} =X such that lim, _, , , pc(x,—u)=Ac(u, X) is called a minimizing
sequence of the minimization problem (1.3). The problem (1.3) is said to
be well posed if it has a unique solution, say x,, and every minimizing
sequence converges to x,.

Let 6:[0,2] = [0, +c0) be the modulus of convexity of C, i.e.,

5C(s)=inf{1 —pc<x;y>

Note that the function J. is well defined, nondecreasing, J,(0)=0, and
0c(2)< 1.

Supposing that d(¢) > 0 for each £ (0, 2], we will prove that for every
closed subset X of E the set E,(X) of all u e E for which the problem (1.3)
is well posed is a residual subset of E. In fact we will prove more, namely
that the set E\E,(X) is o-porous in E. Moreover we will show that for
most (in the sense of the Baire category) closed bounded subsets X of E the
set E\E,(X) is dense in E.

In the present paper we generalize some results from [5-7, 18, 19].
Further results in the same spirit can be found in [7-11, 14, 19]. A com-
prehensive investigation of various moduli of convexity for sets C can be
found in [ 12, 13, 20]. The last three papers were brought to our attention
while correcting the galley proofs.

x,yeCande(x—y)>£}. (1.4)
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2. AUXILIARY RESULTS

We start with some well known properties of the Minkowski functional
which follow immediately from the definition.

PropOSITION 2.1. Let E and C be as above. Then for every x, x' € E we
have

(1) pe(x)=0;

(i) pelx+x)<pelx)+ pelx');
(iif)  pc(Ax)=Apc(x), if A=0;
(1v) pe(x)=1iff xedC;

(v) pe(x)<l1iff xeint C;

(Vi) pelx)>1iff x¢C;

(vil)  pe(x)=0iff x=0;

(viii)  pye(x)=(1/4) pe(x) if 2>0.

For the reader’s convenience we recall also the following elementary

Lemma 2.1. Let f:[0,2] —> [0, 1] be a convex function. Then for every
x, y,u, ve [0, 2] such that x <y <v and x <u<v we have

T =/x) fw) = flw)

~
y—x v—u

Moreover, if f is also nondecreasing, for every 0 <a < 2 the function f restricted
to [0, a] is lipschitzian with constant L =1/(2 —a).

ProrosiTiION 2.2.  The function d. given by (1.4) is continuous in the
interval [0, 2).

Proof. For u,ve E with u#0 and p-(u) = p(—u) set

A(u,v)={(x, ) |x,yeC,x—y=ouand x+ y = fv

for some >0, f>0}.

Now for ¢€[0, 2] set

Ocl(u, v;¢) =inf{l —DPc <x—;—y>

(x, y)e A(u, v) and p(x—y) 28}.

(2.1)
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Observe that the number 6 (u, v; ¢) is well defined. For this, it suffices to
show that the set in brackets is nonempty. Indeed, given u,ve E (u#0,
pcu)=pc(—u)) and ¢€[0, 2] take x =u/p(u) and put y = —x. Clearly
(x, y)e A(u, v) and p-(x — y)=2>=¢. Further d (u, v; 0) =0 and d o(u, v; -)
is nondecreasing.

Claim 1. 0c(u, v;-) is convex in the interval [0,2].

Indeed, let ¢,,&e,€[0,2], ¢;<é&,, and A€[0,1]. Given >0 choose
(x;, ¥;) € A(u, v) with po(x;— y;) =¢;, i=1, 2, such that

oclu,v;,)>1—pc <x,+y,> —a. (2.2)

Put x;=4Ax;+(1 —14)x, and y;=4Ay; + (1 — 1) p,. It is easy to see that
(x5, ¥3) € A(u, v). Let a;, f;=0 be such that

X;— y;=ou and X+ y;,=p,v, i=1,2, 3.
Since a; pc(u) = pclou) = pc(x;— y;) = ¢&;, we have

Pc(x3—y3)=pcliogu+ (1 —2) ayu) = (Ao + (1 = 2) o3) plu)
=Ipclau)+ (1= 2) polasu) > e +(1—A) e, (2.3)
and
Pc(x3+ y3)=pc(Afpv+ (1 =2) pov) = (A + (1 =2) f2) pc(v)
=/pc(frv)+ (1 —=2) pc(Bav)
=pc(x1+ 1) +(1=2) pe(x2+ y,). (24)
Now, by virtue of (2.3), (2.1), (24), and (2.2) we have

Oc(u, v; e, +(1—2) ¢&y)

<1—pc<x3—;y3>

A
=1_§pc(x1+y1)_T

o 1on(52) - (252

<Aoc(u, v;e1)+ (1 —24)dc(u, v; &) + 0.

Pc(X2+ 12)
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As ¢ >0 is arbitrary, it follows that
50(% v; Aep +(1—2)&y) <A5C(“» v; &)+ (1 —A) 6(u, v; &)

which completes the proof of Claim 1.

Claim 2. For every ¢e[0,2] we have

dcle)=inf {Sc(u, v &) |u,ve E,u#0and po(u) = pe(—u)}.

Clearly J-(e) <d(u, v; €). Therefore to prove the claim it suffices to
show that for every x, y e C with p-(x — y) > ¢ there are u, ve E with u #0
and po(u) = po(—u), such that

Sl v;e)<1—pc<"§y>. (2.5)

Indeed, let x, ye C with po(x—y)=e If po(x—y)=pc(y—x), put
u=x—y and v=x+y. Clearly (x, y)e A(u,v) and the relation (2.5)
follows immediately from (2.1). If po(x — y) < p(y —X), put u= y — x and
v=y+x. Clearly (y,x)eA(u,v) and po(y—x)=e. The relation (2.5)
follows again from (2.1). This completes the proof of Claim 2.

By Lemma 2.1 every function d ~(u, v; -) (u #0, p(u) = p(—u)) restricted
to [0, a], 0 <o <2, is lipschitzian with constant 1/(2 —a) and so, J - restricted
to [0, a] is Lipschitzian with the same constant. This completes the proof of
Proposition 2.2.

Define

e, =sup{e=0|d.(e)=0}. (2.6)

ProrosITION 2.3.  The function 0. given by (1.4) is strictly increasing in
the interval [ &g, 2], provided ¢y < 2.

Proof. Suppose for a contradiction then there is ¢>¢, and 0>0,
o+ 0<2, such that d (g + 0)=0(0). Let >0 be arbitrary. By virtue of
Claim 2 of Proposition 2.2 there are u, ve E (u#0, po(u) = p(—u)) such
that

Sela+0)=0c(u, v, 0+ 0)—1. (2.7)

Since d(0) <dc(u, v; o) and J(u, v;-) is convex, by virtue of Lemma 2.1
we have
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Ic(0) _dclu, v30)  Oc(u, v30) —dc(u, v; 0)
o = g N g

< 5C(u7 v, o + 0) B 5c(7/l, v; O-)

X

g

By the last inequality and (2.7) we have J(g) <#. Since > 0 is arbitrary,
it follows that d (o) =0. This is a contradiction, because o > ¢,. The proof
of Proposition 2.3 is complete.

A simple calculation shows that for » >0 we have
pc(x+y)<2r<1 —0¢ <I)C(xr_y)>> for every x, yerC. (2.8)

Define 0¢:[0,1] —» R by

if o=0,
0%(c)=4{0Z20), if 0<o<d(2), (2.9)
2, if 0.2)<o<],

where ¢, is given by (2.6).
Note that J% is a continuous nondecreasing function and 6%(0)=0
provided d(¢) >0 for every ¢ (0, 2].

ProrosSITION 2.4. Suppose that (&) >0 for every e€(0,2]. Let x, ye
E\{0}. Then

pc(X)+pe(y)=pc(x+y) (2.10)
if and only if 'y = Ax for some A=0.

Proof. A simple calculation shows that if y = Ax with 1> 0, then (2.10)
holds. Suppose now that (2.10) holds for some x, ye E\{0}. Let X, e 0C
be such that x=aX, y=py, «>0, f>0. Suppose X¥# j. Taking &=
min{ p(X— ), pc(J— %)}, by virtue of (1.4), we have

Pe(X+7) <21 —0¢(2)).

Without loss of generality we can suppose that a < . By virtue of Proposi-
tion 2.1, the relation (2.10), and the last inequality we have
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a+f=pclax)+ pe(fy) = pclax + f7)
=pclaf+oj+(f—a) §)Sapc(X+ J) +(f—a)
<201 —=0(8)+f—a=a+ f— 200 (),

a contradiction. Thus X = J and so y = (/o) x, which completes the proof.

ProrosiTION 2.5. Let u,ved(C+ x), where xe€ E and u+#v. Then for
every te(0, 1) we have

pelu—y)<pclv—y,),

where y,=tx+ (1 —1t) u.

Proof. Suppose for a contradiction that for some 7€ (0, 1) we have

pclo=y)<pclu—y,).

Clearly

Il=pclo=x)<pclo—=y)+pcly,—x)
<pclu—y)+pclyi—x)=pclu—x)=1
Thus

Pc(v—=y)+pcy,—x)=pclv—x),

and so, by Proposition 2.4, y,— x = (v — y,) for some 4> 0, a contradiction.
This completes the proof.

For Xe®B and ue E set
Ac(u, X)=sup{pc(x —u) | xe X}.

Lemma 2.2. Supose that o-(¢)>0 for every ¢€(0,2]. Let xe E and
r>0. Let ye E, y # x, be such that p(y—x)<r/2. Then for every 0 <o <
2pc(y—x) we have

A Dl yirea) <o+ (= pely—) 0t (-0 ). @1

where 0¢ is given by (2.9),

— X

—_— 2.12
Pc(y—x) (212)

J=y+r—pcly—x))
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and
De(x, y;r,0)=[y+(r—pc(y—x)+0) CI\(x+rint C).
Proof. Let x, y, r, g, and j be as above. Let ze D(x, y; r, o). Set

=Yy

— 2.13
pc(z—y) 13)

Z=y+(r—pcly—x))

Suppose that p(z— 7) >a. By (2.13) and the inequality p.(z — y) <
r—pc(y—x)+ o we have

pclz—=Z2)=pl(z—y)—(2—Y))

_ ) —(f — VN A
=pe((z=0 =0 pety—m) =)

=pclz—y)—r+pcly—x)<o. (2.14)

Thus

pcZ=7)=pcl(z=))—(z=2))Zpclz— ) = pclz—2)>0.
Now using (2.12) we have

z=x=0c=)+(E-y)+(y—x)

o P n Pc(y—x) F—y)
r—pc(y—x)

pcly—x)

PN (s py LLZH (s
) —pey—)

Cr—pely—x

=@—ﬁ+<1—“*y_”>@—y)
r—pc(y—x)

Pc(y—x)

———[(F=»)+(E—-y)]
r—pcly—x)

From this, by virtue of Proposition 2.1 and (2.14), (2.13), (2.8) we have
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pC(Z—X)<O'+<1—fC(y_i)>(”_Pc(y_x))
r—pc(y—x)
+W2<r—pc<y—x>)<1—6c<w>>
r—=pcly—x) r—pcly—x)
o _ _pF—E)
=otr=2pcly e LEA)

and, since p(z—x)>=r, we have

pcl(F—2) > a
5 < .
C<r—pc(y—X) S 2y —x)

From the last inequality, Proposition 2.3, and the definition (2.9) it follows
that

pe(F—2) < (2 >
< 0% . 2.15
-0 %\ 2= (215)

By the inequality po(z — 7) <p(z —2) + p(Z — 7) and the relations (2.14)
and (2.15) we have

pelz=R<att—pely-mot(=C— ). @16)

The last inequality proved for ze D(x, y; r, g) with po(z— 7) > o is trivially
satisfied if po(z— j<o. Thus (2.16) is true for every z in D(x, y;r, o),
whence the statement of Lemma 2.2 follows.

3. EXISTENCE

Let E, C, B, and S be as in Section 1. Set

u= inf p-(x) and v=sup pc(x). (3.1)

xeds xedS
Note that 0 <u <v< + o0 and that for every x € E we have
wllxl<pelx) <vx]. (3.2)
Given Xe B, ue E, and ¢ >0 define

Lo(u, X;o0)={xeX|pc(x—u)<Aic(u, X)+a}.
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ProPOSITION 3.1. Let XeB and ue E be given. Then the problem (1.3)
is well posed if and only if

inf diam L(u, X; o) =0.

o>0

Proof. This is similar to that of [5, Proposition 2].

LeEmMMmA 3.1. Under the hypotheses and with the same notations of
Lemma 2.2 we have

diam D¢(x, y;r, o) Swclx, y; 1, 0), (33)

where

2 N o
wctx ino) =2 (a+0—pelr-0ot (=T )). G4

Proof. 1In view of (3.2) and the definition of A ., for every ze D(x, y;
r, g) we have

ullz=yl<pclz— 7)< AP, DX, y; 1, 0)).
From this and Lemma 2.2 the statement follows.

Remark 3.1. Under the hypotheses of Lemma 2.2, from Propositions
2.2 and 2.3 and the definition (2.9) it follows that the function wq(x, y; r, -)
is well defined, continuous and strictly increasing in the interval
[0,2pc(y—x)]. Clearly w(x, y; r,0)=0 and w(x, y; 7, 2p(y — X)) = 4r/u.

Let wz'(x, y;r, -) denote the inverse function of w(x, y; r, -), defined in
the interval [0, 4r/u].

THEOREM 3.1. Let E and C be as in Section 1. Suppose that é -(¢) >0 for
ee€(0,2]. Let X be a nonempty closed subset of E. Denote by E° the set of
all ue E such that the minimization problem min(u, X) is well posed. Then
E° is a dense G4 subset of E.

Proof. For keN set

E,={ueE]| inf diam L(u, X; 0) <&},

a>0

where &, = 1/2%,
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Claim 1. E, is dense in E.

Indeed, let ue E\X (if ue X there is nothing to prove) and let 0 <r <
Aelu, X)/2. Let 0 <r' <min{r, ur}, where u is given by (3.1). By virtue of
Lemma 3.1 and Remark 3.1 there is o, > 0 such that, for every y € E satisfying
pc(y—u)=r', we have

diam D (u, y; Lc(u, X), 204) <éy. (3.5)

Let xe X be such that po(x—u)<Ac(u, X)+0,y. Let yexu be such that
pcly—u)=r'". A simple calculation shows that

;“C(ya X) <}'C(u9 X)_pC(y_u)+O-0'
Using the last inequality, it is easy to verify that
LC(ya Xa GO)CDC(ua Vs ;°C(u9 X): 20—0)' (36)

From (3.6) and (3.5) it follows that y € E,.. To complete the proof it suffices
to note that

!’

1 r
ly—ull<=pcly—u)=—<r.
Iz Iz
Claim 2. Ej is open in E.
Indeed, let ue E,.. Let o,> 0 be such that

diam L(u, X; g4) <é. (3.7)

Let 0<d<ay/(1+2v), where v is given by (3.1). We will prove that
S(u, 6) < E. In fact, let ye S(u, 0) and let xe L(y, X; J) be arbitrary. By
Proposition 2.1(ii), the relation (3.2), and the choice of 6 we have

Pex—u)<pe(x—=y)+pe(y—u)<Ae(y, X)+ 0+ pely—u)
Shclu, X)+ pelu—y)+0+pcly—u)
Ao, X)+2v |y —ul| +0<Ac(u, X)+(2v+1) 0
<Ao(u, X))+ ag.
Since x is arbitrary in L(y, X; 0) it follows that L(y, X; 0) < L(u, X; ay),
which by virtue of (3.7) implies y e E,. Consequently S(u, 6) < E,. This
completes the proof of Claim 2.

Now set E=(\Z_, E;. Using the Proposition 3.1 it is easy to show that
E=F,, whence the statement of Theorem 3.1 follows.
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4. POROSITY

A subset X of E is said to be porous in E if there exist 0 <a <1 and
ro >0 such that for every xe E and re (0, ry] there is a point y € E such
that S(y, ar) = S(x, r) n(E\X). A subset X of E is called g-porous in E if
it is a countable union of sets which are porous in E. Note that in the
definition of a porous set the statement “for every x € E” can be replaced
by “for every xe X.”

Clearly, a set which is g-porous in E is also merger in E, the converse
being false, in general. Furthermore, if £= R", then each g-porous set has
(Lebesgue) measure zero.

LemMmAa 4.1. Let E and C be as in Section 1 and let u and v be given by (3.1).
Let Xe B and z € E\X. Suppose that the problem minc(z, X) has a unique
solution, say x,. Let I,=zZ, where 2= (1/2)(xo+z). Let 0 <e <4l(z, X)/u
and let y € I,. Define

. 1 _1 ] 1
pyz(g) =min {H%}wc (27 s /“C(Z’ X)a 6)’ 1 +2V PC(J’_Z)} (41)
Then
diam L(u, X; p,.(e)) <e Jor every ueS(y,p,.(¢)).

Proof. Let ze E\X, yel,, and &> 0 satisfy the hypotheses of Lemma 4.1.
Set p,=p,.(e). Let ue S(y, p,) be arbitrary. We will prove that

Le(u, X p,) =Ly, X (1+2v) p,). (4.2)
Indeed, let xe L(u, X; p,). We have
Pe(x—y)<pcx—u)+ pclu—y)<iclu, X)+p,+pclu—1y)
Sy, X)+pcly—u)+p,+pclu—y)
</lc(ya X)+2V HU—J/” +po<)"C(ya X)+(1 +2v)poa

whence (4.2) follows.
Furthermore, since Ao(y, X)=21c(z, X) — po(y —z), we have

LC(ys Xa (1 +2v)po)
={xeX|pc(x—y)<Ac(y, X)+(142v) p,}

= (xeX|pelx— ) iz X) = pely—2)+(1+2) p,}
S Delz i delz X, (14+20) p,). (43)
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Note that
0<pely—z)<iic(z X) and 0<(14+2v)p,<2pc(y—2z). (4.4)
By virtue of (4.2), (4.3), (44), and Lemma 3.1 we have
diam L(u, X, p,) <diam D(z, y; /.o(z, X), (1+2v) p,)
S0z, y; Aoz, X), (1420) py). (4.5)
By (4.1) we have
(142v) p, <z, y; Aelz, X), 8). (4.6)

Since in the interval [0,2p.(y—z)] the function w(z, y; Ac(z, X), -) is
strictly increasing (see Remark 3.1) from (4.6) it follows that

wC(Za Vs /IC(Za X)a (1 + 2V) po) <8.
From this and (4.5) the statement of Lemma 4.1 follows.
THEOREM 4.1.  Under the hypotheses of Theorem 3.1 the set E\E° is
o-porous in E.
Proof. For keN set ¢, =1/2% Define
E: m U U S(ya pyz(gk))’
keN zeE’ yel,

where I, and p,.(¢g,) are as in Lemma 4.1 if ze E\X while, /,={z} and
P..(ex)=¢/2v if ze X, and N stands for the set of all strictly positive
integers.

Using Lemma 4.1 and Proposition 3.1 it is easy to see that £ c E°. Thus

E\EOCE\E= U E,= U U Ey,
keN keN leN
where

Ek:E\ U U S(yapyz(‘gk)) and

zeE’ yel,

E,= {zeEk

1
7<helz X) < 1}.

To complete the proof it suffices to show that for every k, /e N the set Ey;
is porous in E. Let k, /e N be arbitrary. Define

(11
r,=min {21, 2111} (4.7)
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and

(1 u pa, He
—min % e/ S 4.
x mm{4’6’1+2v’2(1+2v) . (48)

where u, v are given by (3.1) and a, € (0, 1/2) is such that

e

ot(n,) <Hk. (49)

We will show that the set E,; is porous in E with r, and a given by (4.7)
and (4.8).

Let ue E;; and 0 <r <r, be any. By virtue of Theorem 3.1 there is z € E°
such that

1
Iz —u] <£ and  <lelz X) <l

Let x, € X satisty po(x,—z) =A(z, X) and let I, =zZ be as in Lemma 4.1.
Since

. . 1 . r
IZ—ul|Z 2=zl —llz—ul >=pcf—2)—~
v 4
1) (2. X) r> 1 ro r>3
=—lclz ——>— =27, — =21,
PA 470 4770 474

it follows that there is y € I, such that |y —u| =3r/4. Clearly y € E, and

ly—zI > Iy —ul — Ju—zl >2r —2 =L
y—z|=Z|ly—u Uu—z 1 r 175
From the last inequality and (3.2) it follows that
2
r<—pcly—z). (4.10)
U
Observe that
S(y, ar)c S(u, r), (4.11)

since, for arbitrary v e S(y, ar) we have

lo—ul < o=yl +Ily —ull <or+3r<r.
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Now we will prove that S(y, ar) = E\E,,. It suffices to show that
S(y: OU’)CS(J” pyz(gk))’ (412)

because if (4.12) is fulfilled we have S(y, ar) = E\E, < E\E,,.
Clearly (4.10) and (4.8) imply

2a 2a,,
W<;Pc(y—2)<mpc(y—2)- (4.13)

Since 0¥ is nondecreasing in the interval [0, 1], by (4.13), (4.9), and the
inequality /> A-(z, X) — pco(y —z) >0 we have

(142v) ocr> e UER
| <0¥(a,) <= < . (4.14)
¢ <2pc(y—2) ‘ 4l " 4(Aclz X) = pely —2)
Moreover, since r <ry<1/2, by (4.8) we have
2 142
20+ arEE2E G (4.15)
u U 2

From (3.4), (4.15), and (4.14) it follows that

wC(27 Vs lC(Z9 X)7 (1 + 2V) O(V)

:g <(1 +2v)or + (Ae(z, X) = pe(y—2z)) 0¢ <(1+2v)ar>>

u 2pcly—2)
& e
\Ek+?k:6k

and, by virtue of Remark 3.1, we get

1
or gm wEl(za s }“C(Za X)a gk)' (416)

From (4.1), (4.16), (4.13), and the inequality &, < 1/2 it follows that ar < p,,.(&;).
Thus (4.12) holds. Since u is arbitrary in E,;, the inclusions (4.11)
and (4.12) show that E,; is porous in E. The proof of Theorem 4.1 is
complete.



BEST APPROXIMATION PROBLEM 69
5. AMBIGUOUS LOCI

Let £ and C be as in Section 1. For X e B consider the ambiguous loci
of X with respect to C, i.e.,

Ac(X)={ze E|min,(z, E) is not well posed}.

THEOREM 5.1.  Under the hypotheses of Theorem 3.1 if in addition E is
separable then

B*={XeB|A(X) is dense in E}

is a residual subset of ‘B.

Proof. For ae E and r> 0 define
B, ,={XeB|Ac(X)NSar)=D).

We claim that B, , is nowhere dense in B.

Indeed, let X e B, ,. Suppose that a ¢ X (if ae X we can take X e B near
X such that a¢ X and we use the argument below). Let 0<e<
min{r, Ac(a, X)} and let ¢ =min{e, u}. Since X € B, , there is x, € X such
that Po(x,—a)=Aq(a, X).

Define

+<“ (a, X) 8,> Xg—d
=a+|Asla, X)—= ) —42—.
yl ¢ 2 pC(xa_a)
Clearly po(y, —a)=Ac(a, X) —¢'/2>¢/2. Let y, € E be such that
8,
pc(y,—a)=pc(y,—a) and 2=yl Ty

Define
, e(y;—a) .
Vimato =12,
8pcly;—a)
and
Y=Xvu {yh J’2}'
Since

1
[x,— y1ll <;Pc(xa_J’1):*<
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and

!

e ¢
[Xa— V2l < Xg—yill + Iy — y2ll <5+ 5-<g,
2 2y

we have (Y, X) <e.
Define

= min {pc(yz—y’l)—pc(yl—y’l) Pcyi—=)5) —pcy2—yh) & 8}
2y ’ 2y P67 6v)”
(5.1)

By virtue of Proposition 2.5 we have p > 0. Let Ze Sgx(Y, p). (Here Sx(Y, p)
stands for the closed ball in B with center Y and radius p.) Define Z,=Zn
S(y;, p). Observe that the sets Z, and Z, are nonempty and disjoint, because
ly:— v, =3p. Using Proposition 2.1 and 2.4 it is easy verify that

. 1.
d(y;, X)=inf |x—y;[|=-inf po(x—y;)
xeX VxeX

On the other hand

e llya=nill _ ly2— il zi’
8pc(y1—a) 4 8v

Iya—=xill =
From this and (3.2) it follows that

’ !

&
PC(J’z_J’1)<§'
Thus, for z €y y, we have

Az, Z)<pcyi—2z)+ pelyi—yi) +vp

’

<%+/lc(a, X)—

5; +vp=21(a, X)—%+vp (5.2)
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and

helz, X) 2 el X) = pelz —a) 2 el X) — 5. (53)

Since vp —¢&'/2 < —vp —¢'/8 from (5.2) and (5.3) it follows that
Aoz, Z)=delz, Z, 0 Zy) for zeyiys. (5.4)
On the other hand, using (5.1) we have

eV, Z)Spc(y1 = YD) +vp<pc(yo— ) —vp <icl Vi, Z,).

A similar argument shows that A.()5, Z,) <Ac()5, Z;). Since the map
M-, Zy)— Ao+, Z;) 1s continuous, nonnegative at y}, and nonpositive
at y5, it follows that there is a Z €y 5 such that

rclZ, Z1) = A2, Z,).
By (5.4) and the last equality we have
;Lc(f, Z) = ;uc(f, Zl) = ;uc(f, Zz)

Since h(Z,, Z,) = p, it follows that the minimization problem min(Z, Z) is
not well posed, and so Z¢ B, ,. Since Z is arbitrary in Sg(Y, p), we have
Sg(Y, p)nB, .= . Consequently B, , is nowhere dense in B.

Let D be a countable dense subset of E and let @, denote the set of all
positive rationals. Define

B= U B.,

aeD reQ+

Since B is of the first Baire category in B, to complete the proof it suffices
to show that B\B = B*. In fact, let X e B\B and let S(x, s) be an arbitrary
ball in E. Take ae D and re Q, such that S(a, r) = S(x, s). Since X¢ 9B, ,,
the set A-(X) N S(a, r) is nonempty, and so XeB*. This completes the
proof of Theorem 5.1.
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