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Let C be a closed bounded convex subset of a Banach space E which has
the origin of E as an interior point and let pC denote the Minkowski functional
with respect to C. Given a closed set X/E and a point u # E we consider a mini-
mization problem minC(u, X ) which consists in proving the existence of a point
x~ # X such that pC(x~ &u)=*C(u, X ), where *C(u, X )=inf [ pC(x&u) | x # X]. If
such a point is unique and every sequence [xn]/X satisfying the condition
limn � +� pC(xn&u)=*C(u, X ) converges to this point, the minimization problem
min(u, X ) is called well posed. Under the assumption that the modulus of convexity
with respect to pC is strictly positive, we prove that for every closed subset X of E,
the set Eo(X ) of all u # E for which the minimization problem minC(u, X ) is well
posed is a residual subset of E. In fact we show more, namely that the set E"Eo(X )
is _-porous in E. Moreover, we prove that for most closed bounded subsets X of
E, the set E"Eo(X ) is dense in E. � 1998 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper E is a Banach space of dimension at least 2. For
X/E (X{<) by int X, �X, and diam X we mean the interior of X, the
boundary of X, and the diameter of X, respectively. If x, y # E, xy stands
for the closed interval with end points x and y. A closed ball in E with
center x and radius r>0 is denoted by S(x, r). For notational convenience
we put S=S(0, 1).

Define

B=[X/E | X is nonempty closed bounded].
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We suppose B is endowed with the Hausdorff metric. As is well known
under this metric B is a complete metric space.

Throughout this paper C will denote a closed bounded convex subset of
E with 0 # int C. Clearly C is an absorbing not necessarily symmetric subset
of E. Recall that the functional of Minkowski pC : E � R with respect to the
set C is defined by

pC(x)=inf [:>0 | x # :C]. (1.1)

For X # B and u # E put

*C(u, X )=inf [ pC(x&u) | x # X]. (1.2)

It is easy to see that *C(u, X) is continuous as a function of u # E.
Given X # B and u # E let us consider the minimization problem, denoted

by

minC (u, X ) (1.3)

which consists in finding points x~ # X (if they exist) satisfying pC(x~ &u)=
*C(u, X). Any such point x~ is called a solution of (1.3) and any sequence
[xn]/X such that limn � +� pC(xn&u)=*C(u, X ) is called a minimizing
sequence of the minimization problem (1.3). The problem (1.3) is said to
be well posed if it has a unique solution, say xo , and every minimizing
sequence converges to xo .

Let $C : [0, 2] � [0, +�) be the modulus of convexity of C, i.e.,

$C (=)=inf {1& pC \x+ y
2 + } x, y # C and pC(x& y)�== . (1.4)

Note that the function $C is well defined, nondecreasing, $C(0)=0, and
$C(2)�1.

Supposing that $C(=)>0 for each = # (0, 2], we will prove that for every
closed subset X of E the set Eo(X ) of all u # E for which the problem (1.3)
is well posed is a residual subset of E. In fact we will prove more, namely
that the set E"Eo(X ) is _-porous in E. Moreover we will show that for
most (in the sense of the Baire category) closed bounded subsets X of E the
set E"Eo(X) is dense in E.

In the present paper we generalize some results from [5�7, 18, 19].
Further results in the same spirit can be found in [7�11, 14, 19]. A com-
prehensive investigation of various moduli of convexity for sets C can be
found in [12, 13, 20]. The last three papers were brought to our attention
while correcting the galley proofs.
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2. AUXILIARY RESULTS

We start with some well known properties of the Minkowski functional
which follow immediately from the definition.

Proposition 2.1. Let E and C be as above. Then for every x, x$ # E we
have

(i) pC(x)�0;

(ii) pC(x+x$)�pC(x)+ pC(x$);

(iii) pC(*x)=*pC(x), if *�0;

(iv) pC(x)=1 iff x # �C;

(v) pC(x)<1 iff x # int C;

(vi) pC(x)>1 iff x � C;

(vii) pC(x)=0 iff x=0;

(viii) p*C(x)=(1�*) pC(x) if *>0.

For the reader's convenience we recall also the following elementary

Lemma 2.1. Let f : [0, 2] � [0, 1] be a convex function. Then for every
x, y, u, v # [0, 2] such that x< y�v and x�u<v we have

f ( y)& f (x)
y&x

�
f (v)& f (u)

v&u
.

Moreover, if f is also nondecreasing, for every 0<:<2 the function f restricted
to [0, :] is lipschitzian with constant L=1�(2&:).

Proposition 2.2. The function $C given by (1.4) is continuous in the
interval [0, 2).

Proof. For u, v # E with u{0 and pC(u)� pC(&u) set

A(u, v)=[(x, y) | x, y # C, x& y=:u and x+ y=;v

for some :�0, ;�0].

Now for = # [0, 2] set

$C(u, v; =)=inf {1& pC \x+ y
2 + } (x, y) # A(u, v) and pC(x& y)�== .

(2.1)
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Observe that the number $C(u, v; =) is well defined. For this, it suffices to
show that the set in brackets is nonempty. Indeed, given u, v # E (u{0,
pC(u)� pC(&u)) and = # [0, 2] take x=u�pC(u) and put y=&x. Clearly
(x, y) # A(u, v) and pC(x& y)=2�=. Further $C(u, v; 0)=0 and $C(u, v; } )
is nondecreasing.

Claim 1. $C(u, v; } ) is convex in the interval [0,2].

Indeed, let =1 , =2 # [0, 2], =1<=2 , and * # [0, 1]. Given _>0 choose
(xi , yi) # A(u, v) with pC(x i& yi)�=i , i=1, 2, such that

$C(u, v; =i)>1& pC \xi+ yi

2 +&_. (2.2)

Put x3=*x1+(1&*) x2 and y3=*y1+(1&*) y2 . It is easy to see that
(x3 , y3) # A(u, v). Let :i , ;i�0 be such that

xi& yi=:iu and xi+ yi=;iv, i=1, 2, 3.

Since :i pC(u)= pC(:i u)= pC(x i& y i)�=i , we have

pC(x3& y3)= pC(*:1u+(1&*) :2u)=(*:1+(1&*) :2) pC(u)

=*pC(:1u)+(1&*) pC(:2 u)�*=1+(1&*) =2 (2.3)

and

pC(x3+ y3)= pC(*;1v+(1&*) ;2v)=(*;1+(1&*) ;2) pC(v)

=*pC(;1v)+(1&*) pC(;2v)

=*pC(x1+ y1)+(1&*) pC(x2+ y2). (2.4)

Now, by virtue of (2.3), (2.1), (2.4), and (2.2) we have

$C(u, v; *=1+(1&*) =2)

�1& pC \x3+ y3

2 +
=1&

*
2

pC(x1+ y1)&
1&*

2
pC(x2+ y2)

=* \1& pC \x1+ y1

2 +++(1&*) \1& pC \x2+ y2

2 ++
<*$C(u, v; =1)+(1&*) $C(u, v; =2)+_.
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As _>0 is arbitrary, it follows that

$C(u, v; *=1+(1&*) =2)�*$C(u, v; =1)+(1&*) $(u, v; =2)

which completes the proof of Claim 1.

Claim 2. For every = # [0, 2] we have

$C(=)=inf [$C(u, v; =) | u, v # E, u{0 and pC(u)� pC(&u)].

Clearly $C(=)�$C(u, v; =). Therefore to prove the claim it suffices to
show that for every x, y # C with pC(x& y)�= there are u, v # E with u{0
and pC(u)� pC(&u), such that

$C(u, v; =)�1& pC \x+ y
2 + . (2.5)

Indeed, let x, y # C with pC(x& y)�=. If pC(x& y)� pC( y&x), put
u=x& y and v=x+ y. Clearly (x, y) # A(u, v) and the relation (2.5)
follows immediately from (2.1). If pC(x& y)< pC( y&x), put u= y&x and
v= y+x. Clearly ( y, x) # A(u, v) and pC( y&x)�=. The relation (2.5)
follows again from (2.1). This completes the proof of Claim 2.

By Lemma 2.1 every function $C(u, v; } ) (u{0, pC(u)� pC(&u)) restricted
to [0, :], 0<:<2, is lipschitzian with constant 1�(2&:) and so, $C restricted
to [0, :] is Lipschitzian with the same constant. This completes the proof of
Proposition 2.2.

Define

=o=sup[=�0 | $C(=)=0]. (2.6)

Proposition 2.3. The function $C given by (1.4) is strictly increasing in
the interval [=0 , 2], provided =0<2.

Proof. Suppose for a contradiction then there is _>=o and %>0,
_+%�2, such that $C(_+%)=$C(_). Let '>0 be arbitrary. By virtue of
Claim 2 of Proposition 2.2 there are u, v # E (u{0, pC(u)� pC(&u)) such
that

$C(_+%)�$C(u, v; _+%)&'. (2.7)

Since $C(_)�$C(u, v; _) and $C(u, v; } ) is convex, by virtue of Lemma 2.1
we have
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$C(_)
_

�
$C(u, v; _)

_
=

$C(u, v; _)&$C(u, v; 0)
_

�
$C(u, v; _+%)&$C(u, v; _)

_
.

By the last inequality and (2.7) we have $C(_)�'. Since '>0 is arbitrary,
it follows that $C(_)=0. This is a contradiction, because _>=o . The proof
of Proposition 2.3 is complete.

A simple calculation shows that for r>0 we have

pC(x+ y)�2r \1&$C \pC(x& y)
r ++ for every x, y # rC. (2.8)

Define $*C : [0, 1] � R by

=o , if _=0,

$*C(_)={$&1
C (_), if 0<_<$C(2), (2.9)

2, if $C(2)�_�1,

where =o is given by (2.6).
Note that $*C is a continuous nondecreasing function and $*C(0)=0

provided $(=)>0 for every = # (0, 2].

Proposition 2.4. Suppose that $C(=)>0 for every = # (0, 2]. Let x, y #
E"[0]. Then

pC(x)+ pC( y)= pC(x+ y) (2.10)

if and only if y=*x for some *�0.

Proof. A simple calculation shows that if y=*x with *�0, then (2.10)
holds. Suppose now that (2.10) holds for some x, y # E"[0]. Let x~ , y~ # �C
be such that x=:x~ , y=;y~ , :>0, ;>0. Suppose x~ { y~ . Taking =~ =
min[ pC(x~ & y~ ), pC( y~ &x~ )], by virtue of (1.4), we have

pC(x~ + y~ )�2(1&$C(=~ )).

Without loss of generality we can suppose that :�;. By virtue of Proposi-
tion 2.1, the relation (2.10), and the last inequality we have
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:+;= pC(:x~ )+ pC(;y~ )= pC(:x~ +;y~ )

= pC(:x~ +:y~ +(;&:) y~ )�:pC(x~ + y~ )+(;&:)

�2:(1&$C(=~ ))+;&:=:+;&2:$C(=~ ),

a contradiction. Thus x~ = y~ and so y=(;�:) x, which completes the proof.

Proposition 2.5. Let u, v # �(C+x), where x # E and u{v. Then for
every t # (0, 1) we have

pC(u& yt)< pC(v& yt),

where yt=tx+(1&t) u.

Proof. Suppose for a contradiction that for some t # (0, 1) we have

pC(v& yt)�pC(u& yt).

Clearly

1= pC(v&x)�pC(v& yt)+ pC( yt&x)

�pC(u& yt)+ pC( yt&x)= pC(u&x)=1.

Thus

pC(v& yt)+ pC( yt&x)= pC(v&x),

and so, by Proposition 2.4, yt&x=*(v& yt) for some *>0, a contradiction.
This completes the proof.

For X # B and u # E set

4C(u, X )=sup[ pC(x&u) | x # X].

Lemma 2.2. Supose that $C(=)>0 for every = # (0, 2]. Let x # E and
r>0. Let y # E, y{x, be such that pC( y&x)�r�2. Then for every 0<_<
2pC( y&x) we have

4C( y~ , DC(x, y; r, _))�_+(r& pC( y&x)) $*C \ _
2pC( y&x)+ , (2.11)

where $*C is given by (2.9),

y~ = y+(r& pC( y&x))
y&x

pC( y&x)
, (2.12)
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and

DC(x, y; r, _)=[ y+(r& pC( y&x)+_) C]"(x+r int C).

Proof. Let x, y, r, _, and y~ be as above. Let z # DC(x, y; r, _). Set

z~ = y+(r& pC( y&x))
z& y

pC(z& y)
. (2.13)

Suppose that pC(z& y~ )>_. By (2.13) and the inequality pC(z& y)�
r& pC( y&x)+_ we have

pC(z&z~ )= pC((z& y)&(z~ & y))

= pC \(z& y)&(r& pC( y&x))
z& y

pC(z& y)+
= pC(z& y)&r+ pC( y&x)�_. (2.14)

Thus

pC(z~ & y~ )= pC((z& y~ )&(z&z~ ))� pC(z& y~ )& pC(z&z~ )>0.

Now using (2.12) we have

z&x=(z&z~ )+(z~ & y)+( y&x)

=(z&z~ )+(z~ & y)+
pC( y&x)

r& pC( y&x)
( y~ & y)

&
pC( y&x)

r& pC( y&x)
(z~ & y)+

pC( y&x)
r& pC( y&x)

(z~ & y)

=(z&z~ )+\1&
pC( y&x)

r& pC( y&x)+ (z~ & y)

+
pC( y&x)

r& pC( y&x)
[( y~ & y)+(z~ & y)].

From this, by virtue of Proposition 2.1 and (2.14), (2.13), (2.8) we have
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pC(z&x)�_+\1&
pC( y&x)

r& pC( y&x)+ (r& pC( y&x))

+
pC( y&x)

r& pC( y&x)
2(r& pC( y&x)) \1&$C \ pC( y~ &z~ )

r& pC( y&x)++
=_+r&2pC( y&x) $C \ pC( y~ &z~ )

r& pC( y&x)+ ,

and, since pC(z&x)�r, we have

$C \ pC( y~ &z~ )
r& pC( y&x)+�

_
2pC( y&x)

.

From the last inequality, Proposition 2.3, and the definition (2.9) it follows
that

pC( y~ &z~ )
r& pC( y&x)

�$*C \ _
2pC( y&x)+ . (2.15)

By the inequality pC(z& y~ )�pC(z&z~ )+ pC(z~ & y~ ) and the relations (2.14)
and (2.15) we have

pC(z& y~ )�_+(r& pC( y&x)) $*C \ _
2pC( y&x)+ . (2.16)

The last inequality proved for z # DC(x, y; r, _) with pC(z& y~ )>_ is trivially
satisfied if pC(z& y~ �_. Thus (2.16) is true for every z in DC(x, y; r, _),
whence the statement of Lemma 2.2 follows.

3. EXISTENCE

Let E, C, B, and S be as in Section 1. Set

+= inf
x # �S

pC(x) and &= sup
x # �S

pC(x). (3.1)

Note that 0<+�&<+� and that for every x # E we have

+ &x&�pC(x)�& &x&. (3.2)

Given X # B, u # E, and _>0 define

LC (u, X; _)=[x # X | pC(x&u)�*C(u, X )+_].
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Proposition 3.1. Let X # B and u # E be given. Then the problem (1.3)
is well posed if and only if

inf
_>0

diam LC(u, X; _)=0.

Proof. This is similar to that of [5, Proposition 2].

Lemma 3.1. Under the hypotheses and with the same notations of
Lemma 2.2 we have

diam DC(x, y; r, _)�|C(x, y; r, _), (3.3)

where

|C(x, y; r, _)=
2
+ \_+(r& pC( y&x)) $*C \ _

2pC( y&x)++ . (3.4)

Proof. In view of (3.2) and the definition of 4C , for every z # DC(x, y;
r, _) we have

+ &z& y~ &�pC(z& y~ )�4C( y~ , DC(x, y; r, _)).

From this and Lemma 2.2 the statement follows.

Remark 3.1. Under the hypotheses of Lemma 2.2, from Propositions
2.2 and 2.3 and the definition (2.9) it follows that the function |C(x, y; r, } )
is well defined, continuous and strictly increasing in the interval
[0, 2pC(y&x)]. Clearly |C(x, y; r, 0)=0 and |C(x, y; r, 2pC( y&x))=4r�+.

Let |&1
C (x, y; r, } ) denote the inverse function of |C(x, y; r, } ), defined in

the interval [0, 4r�+].

Theorem 3.1. Let E and C be as in Section 1. Suppose that $C(=)>0 for
= # (0, 2]. Let X be a nonempty closed subset of E. Denote by Eo the set of
all u # E such that the minimization problem minC(u, X ) is well posed. Then
Eo is a dense G$ subset of E.

Proof. For k # N set

Ek=[u # E | inf
_>0

diam LC(u, X; _)<=k],

where =k=1�2k.
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Claim 1. Ek is dense in E.

Indeed, let u # E"X (if u # X there is nothing to prove) and let 0<r<
*C(u, X)�2. Let 0<r$<min[r, +r], where + is given by (3.1). By virtue of
Lemma 3.1 and Remark 3.1 there is _0>0 such that, for every y # E satisfying
pC( y&u)=r$, we have

diam DC(u, y; *C(u, X ), 2_0)<=k . (3.5)

Let x # X be such that pC(x&u)<*C(u, X )+_0 . Let y # xu be such that
pC( y&u)=r$. A simple calculation shows that

*C( y, X )<*C(u, X )& pC( y&u)+_o .

Using the last inequality, it is easy to verify that

LC( y, X; _0)/DC(u, y; *C(u, X ), 2_0). (3.6)

From (3.6) and (3.5) it follows that y # Ek . To complete the proof it suffices
to note that

&y&u&�
1
+

pC( y&u)=
r$
+

<r.

Claim 2. Ek is open in E.

Indeed, let u # Ek . Let _0>0 be such that

diam LC(u, X; _0)<=k . (3.7)

Let 0<$�_0 �(1+2&), where & is given by (3.1). We will prove that
S(u, $)/Ek . In fact, let y # S(u, $) and let x # LC( y, X; $) be arbitrary. By
Proposition 2.1(ii), the relation (3.2), and the choice of $ we have

pC(x&u)�pC(x& y)+ pC( y&u)�*C( y, X )+$+ pC( y&u)

�*C(u, X )+ pC(u& y)+$+ pC( y&u)

�*C(u, X )+2& &y&u&+$�*C(u, X )+(2&+1) $

�*C(u, X )+_0 .

Since x is arbitrary in LC( y, X; $) it follows that LC( y, X; $)/LC(u, X; _0),
which by virtue of (3.7) implies y # Ek . Consequently S(u, $)/Ek . This
completes the proof of Claim 2.

Now set E� =��
k=1 Ek . Using the Proposition 3.1 it is easy to show that

E� =E0 , whence the statement of Theorem 3.1 follows.
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4. POROSITY

A subset X of E is said to be porous in E if there exist 0<:�1 and
r0>0 such that for every x # E and r # (0, r0] there is a point y # E such
that S( y, :r)/S(x, r) & (E"X ). A subset X of E is called _-porous in E if
it is a countable union of sets which are porous in E. Note that in the
definition of a porous set the statement ``for every x # E'' can be replaced
by ``for every x # X.''

Clearly, a set which is _-porous in E is also merger in E, the converse
being false, in general. Furthermore, if E=Rn, then each _-porous set has
(Lebesgue) measure zero.

Lemma 4.1. Let E and C be as in Section 1 and let + and & be given by (3.1).
Let X # B and z # E"X. Suppose that the problem minC(z, X ) has a unique
solution, say x0 . Let Iz=zẑ, where ẑ=(1�2)(x0+z). Let 0<=<4*C(z, X )�+
and let y # Iz . Define

\yz(=)=min { 1
1+2&

|&1
C (z, y; *C(z, X ), =),

1
1+2&

pC( y&z)= . (4.1)

Then

diam LC(u, X; \yz(=))�= for every u # S( y, \yz(=)).

Proof. Let z # E"X, y # Iz , and =>0 satisfy the hypotheses of Lemma 4.1.
Set \o=\yz(=). Let u # S(y, \0) be arbitrary. We will prove that

LC(u, X; \o)/LC( y, X; (1+2&) \o). (4.2)

Indeed, let x # LC(u, X; \o). We have

pC(x& y)�pC(x&u)+ pC(u& y)�*C(u, X )+\o+ pC(u& y)

�*C( y, X )+ pC( y&u)+\o+ pC(u& y)

�*C( y, X )+2& &u& y&+\o�*C( y, X )+(1+2&) \o ,

whence (4.2) follows.
Furthermore, since *C( y, X )=*C(z, X)& pC( y&z), we have

LC( y, X; (1+2&) \o)

=[x # X | pC(x& y)�*C( y, X )+(1+2&) \o]

=[x # X | pC(x& y)�*C(z, X)& pC( y&z)+(1+2&) \o]

/DC(z, y; *C(z, X), (1+2&) \o). (4.3)
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Note that

0< pC( y&z)� 1
2*C(z, X ) and 0<(1+2&) \o<2pC( y&z). (4.4)

By virtue of (4.2), (4.3), (4.4), and Lemma 3.1 we have

diam LC(u, X, \o)�diam Dc(z, y; *C(z, X ), (1+2&) \o)

�|C(z, y; *C(z, X), (1+2&) \o). (4.5)

By (4.1) we have

(1+2&) \o�|&1
C (z, y; *C(z, X ), =). (4.6)

Since in the interval [0, 2pC( y&z)] the function |C(z, y; *C(z, X ), } ) is
strictly increasing (see Remark 3.1) from (4.6) it follows that

|C(z, y; *C(z, X ), (1+2&) \o)�=.

From this and (4.5) the statement of Lemma 4.1 follows.

Theorem 4.1. Under the hypotheses of Theorem 3.1 the set E"E o is
_-porous in E.

Proof. For k # N set =k=1�2k. Define

E� = ,
k # N

.
z # E o

.
y # Iz

S( y, \yz(=k)),

where Iz and \yz(=k) are as in Lemma 4.1 if z # E"X while, Iz=[z] and
\zz(=k)==k �2& if z # X, and N stands for the set of all strictly positive
integers.

Using Lemma 4.1 and Proposition 3.1 it is easy to see that E� /Eo. Thus

E"Eo/E"E� = .
k # N

Ek= .
k # N

.
l # N

Ekl ,

where

Ek=E" .
z # Eo

.
y # Iz

S( y, \yz(=k)) and

Ekl={z # Ek } 1
l
<*C(z, X )<l= .

To complete the proof it suffices to show that for every k, l # N the set Ekl

is porous in E. Let k, l # N be arbitrary. Define

ro=min { 1
2l

,
1

2&l= (4.7)
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and

:=min {1
4

,
+
6

,
+:o

1+2&
,

+=k

2(1+2&)= , (4.8)

where +, & are given by (3.1) and :o # (0, 1�2) is such that

$*C(:o)�
+=k

4l
. (4.9)

We will show that the set Ekl is porous in E with r0 and : given by (4.7)
and (4.8).

Let u # Ekl and 0<r�ro be any. By virtue of Theorem 3.1 there is z # E o

such that

&z&u&<
r
4

and
1
l
<*C(z, X)<l.

Let xo # X satisfy pC(xo&z)=*C(z, X ) and let Iz=zẑ be as in Lemma 4.1.
Since

&ẑ&u&�&ẑ&z&&&z&u&>
1
&

pC(ẑ&z)&
r
4

=
1
2&

*C(z, X )&
r
4

>
1

2&l
&

r
4

�ro&
r
4

�
3
4

r,

it follows that there is y # Iz such that &y&u&=3r�4. Clearly y # Eo and

&y&z&�&y&u&&&u&z&>
3
4

r&
r
4

=
r
2

.

From the last inequality and (3.2) it follows that

r<
2
+

pC( y&z). (4.10)

Observe that

S( y, :r)/S(u, r), (4.11)

since, for arbitrary v # S( y, :r) we have

&v&u&�&v& y&+&y&u&�:r+ 3
4r�r.
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Now we will prove that S( y, :r)/E"Ekl . It suffices to show that

S( y, :r)/S( y, \yz(=k)), (4.12)

because if (4.12) is fulfilled we have S( y, :r)/E"Ek /E"Ekl .
Clearly (4.10) and (4.8) imply

:r<
2:
+

pC( y&z)�
2:o

1+2&
pC( y&z). (4.13)

Since $*C is nondecreasing in the interval [0, 1], by (4.13), (4.9), and the
inequality l>*C(z, X )& pC( y&z)>0 we have

$*C \(1+2&) :r
2pC( y&z)+�$*C(:o)�

+=k

4l
�

+=k

4(*C(z, X )& pC( y&z))
. (4.14)

Moreover, since r�r0�1�2, by (4.8) we have

2
+

(1+2&) :r�
(1+2&) :

+
�

=k

2
. (4.15)

From (3.4), (4.15), and (4.14) it follows that

|C(z, y; *C(z, X ), (1+2&) :r)

=
2
+ \(1+2&) :r+(*C(z, X )& pC( y&z)) $*C \ (1+2&) :r

2pC( y&z)++
�

=k

2
+

=k

2
==k

and, by virtue of Remark 3.1, we get

:r�
1

1+2&
|&1

C (z, y; *C(z, X ), =k). (4.16)

From (4.1), (4.16), (4.13), and the inequality :o�1�2 it follows that :r�\yz(=k).
Thus (4.12) holds. Since u is arbitrary in Ekl , the inclusions (4.11)
and (4.12) show that Ekl is porous in E. The proof of Theorem 4.1 is
complete.
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5. AMBIGUOUS LOCI

Let E and C be as in Section 1. For X # B consider the ambiguous loci
of X with respect to C, i.e.,

AC(X )=[z # E | minC (z, E) is not well posed].

Theorem 5.1. Under the hypotheses of Theorem 3.1 if in addition E is
separable then

B*=[X # B | AC(X ) is dense in E]

is a residual subset of B.

Proof. For a # E and r>0 define

Ba, r=[X # B | AC(X ) & S(a, r)=<].

We claim that Ba, r is nowhere dense in B.
Indeed, let X # Ba, r . Suppose that a � X (if a # X we can take X� # B near

X such that a � X� and we use the argument below). Let 0<=<
min[r, *C(a, X )] and let =$=min[=, =+]. Since X # Ba, r there is xa # X such
that PC(xa&a)=*C(a, X ).

Define

y1=a+\*C(a, X )&
=$
2+

xa&a
pC(xa&a)

.

Clearly pC( y1&a)=*C(a, X )&=$�2>=�2. Let y2 # E be such that

pC( y2&a)= pC( y1&a) and &y2& y1&=
=$
2&

.

Define

y$i=a+
=$( yi&a)

8pC( yi&a)
, i=1, 2,

and

Y=X _ [ y1 , y2].

Since

&xa& y1&�
1
+

pC(xa& y1)=
=$
2+

�
=
2
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and

&xa& y2&�&xa& y1&+&y1& y2&�
=
2

+
=$
2&

�=,

we have h(Y, X )�=.
Define

\=min {pC( y2& y$1)& pC( y1& y$1)
2&

,
pC( y1& y$2)& pC( y2& y$2)

2&
,

=$
6

,
=$
6&= .

(5.1)

By virtue of Proposition 2.5 we have \>0. Let Z # SB(Y, \). (Here SB (Y, \)
stands for the closed ball in B with center Y and radius \.) Define Zi=Z &
S( yi , \). Observe that the sets Z1 and Z2 are nonempty and disjoint, because
&y1& y2 &�3\. Using Proposition 2.1 and 2.4 it is easy verify that

d( yi , X )= inf
x # X

&x& yi&�
1
&

inf
x # X

pC(x& yi)

�
1
&

pC(xa& y1)=
=$
2&

�3\, i=1, 2.

On the other hand

&y$2& y$1 &=
=$ &y2&y1&
8pC( y1&a)

<
&y2& y1&

4
=

=$
8&

.

From this and (3.2) it follows that

pC( y$2& y$1)<
=$
8

.

Thus, for z # y$1 y$2 we have

*C(z, Zi)�pC( y$i&z)+ pC( yi& y$i)+&\

<
=$
8

+*C(a, X )&
5=$
8

+&\=*C(a, X )&
=$
2

+&\ (5.2)
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and

*C(z, X )�*C(a, X )& pC(z&a)�*C(a, X )&
=$
8

. (5.3)

Since &\&=$�2<&&\&=$�8 from (5.2) and (5.3) it follows that

*C(z, Z)=*C(z, Z1 _ Z2) for z # y$1 y$2 . (5.4)

On the other hand, using (5.1) we have

*C( y$1 , Z1)�pC( y1& y$1)+&\�pC( y2& y$1)&&\�*C( y$1 , Z2).

A similar argument shows that *C( y$2 , Z2)�*C( y$2 , Z1). Since the map
*( } , Z2)&*C( } , Z1) is continuous, nonnegative at y$1 , and nonpositive
at y$2 , it follows that there is a z~ # y$1 y$2 such that

*C(z~ , Z1)=*C(z~ , Z2).

By (5.4) and the last equality we have

*C(z~ , Z)=*C(z~ , Z1)=*C(z~ , Z2).

Since h(Z1 , Z2)�\, it follows that the minimization problem minC(z~ , Z) is
not well posed, and so Z � Ba, r . Since Z is arbitrary in SB (Y, \), we have
SB (Y, \) & Ba, r=<. Consequently Ba, r is nowhere dense in B.

Let D be a countable dense subset of E and let Q+ denote the set of all
positive rationals. Define

B� = .
a # D

.
r # Q+

Ba, r .

Since B� is of the first Baire category in B, to complete the proof it suffices
to show that B"B� /B*. In fact, let X # B"B� and let S(x, s) be an arbitrary
ball in E. Take a # D and r # Q+ such that S(a, r)/S(x, s). Since X � Ba, r ,
the set AC(X ) & S(a, r) is nonempty, and so X # B*. This completes the
proof of Theorem 5.1.
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